
 

         

                                             REVISTA ARGENTINA 

  2020, Vol. XXIX, N°5, 272-284  DE CLÍNICA PSICOLÓGICA 

 

Revista Argentina de Clínica Psicológica 

2020, Vol. XXIX, N°5, 272-284 

DOI: 10.24205/03276716.2020.1029 

 

 

 

 A semi-supervised feature selection method for 

image inpainting in Fourier transform domain 
 

Yingfu Caia, Xiaoyang Yua*, Ali Tavakolib 

Abstract

This paper deals with recovering an image some of which Fourier transform 

coefficients are lost. Based on a semi-supervised feature selection method, we first present a 

truncated singular value decomposition approach and second present a new minimization 

algorithm for image inpainting in the Fourier transform domain. The convergence of this 

algorithm is also proved. Finally, some comparisons of the given methods and some known 

algorithms are presented to show the efficiency of our approaches. 
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1. Introduction 

Image inpainting is recovering an image or video, 

part of which observed data is incomplete. The lost 

data may be related to either intensity of the pixels 

in an area of the target image or the coefficients of 

transform domain [2,24]. 

Transformed domain inpainting practically 

happens in applications because images are usually 

formatted, transmitted, and stored in a transform 

domain. For instance, JPEG standard images are 

encoded in terms of discrete cosine transform 

coefficients and JPEG 2000 standard images are 

encoded by wavelet transform coefficients, and in 

magnetic resonance (MR) imaging the acquired data 

are Fourier transform coefficients [6,7]. When some 

of the coefficients of the transform domain such as 

Fourier or wavelet transform are lost, the inverse 

transform can not naturally construct the original 

image. In this case, we need to inpaint the images in 

the transform domain to retrieve the original image 

as well as possible.  

It can be done by using the information of the 

surrounding areas. Of course, one notes that by the 

definition of discrete Fourier transform for a 2D 

image I of size m × n, i.e., 

 

���, �� = � �  
��, ��
^�−2� ����� + ��� ����
���

���
��� ,   � = 0, . . , � − 1,   � = 0, …  , � − 1, 

 

the following relation holds: 

�"��, �� =  ��� −  �, � −  ��,   � =  0, . . , � −  1, � =  0, . . . , � −  1, 
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where #  denotes the conjugate operator. Hence, 

during the restoration in the Fourier transform 

domain, it is enough to save only half of the Fourier 

coefficients. In 2016, Li and Zeng introduced an 

algorithm called iterative coupled transform domain 

inpainting (ICTDI) for reconstruction of an image 

some of which Fourier transform coefficients are lost 

[18]. It uses two positive parameters to adjust the 

weight of each term of the given least square 

minimization problem. some modifications of 

Algorithm ICTDI that benefit one more parameter to 

have more degree of freedom are given in [19] and 

[20].  

In this paper, we used a semi-supervised feature 

selection method to first approximate the intensities 

of some pixels that are called auxiliary pixels. Next, a 

linear system is constituted whose solution is 

approximated by a truncated singular value 

decomposition method. Then by a perturbation in 

the auxiliary points, a minimization problem is 

presented whose convergence is also proved.  

 

2. A semi-supervised feature selection method 

     In this section, we present an algorithm based on 

a semi-supervised feature selection method for 

image inpainting in the Fourier transform domain. 

The methodology simply can be expressed as 

follows: 

        First, the inverse Fourier transform of the 

missing Fourier transform naturally generate an 

image with fairly high mean square error (MSE). This 

image is a corrupted image whose contrast depends  

on the percentage of lost Fourier transform 

coefficients. However, an image is derived 

wherewithal the general feature of the original 

image is some deal identified. Although the exact 

intensity of each pixel is not clear and it is a 

stochastic variable, some pixels of the image can be 

determined by a good approximation. For example, 

Figure 2 shows the picture of a cameraman by the 

inverse Fourier transform whose 30 percent of 

Fourier transform coefficients are missing. It is clear 

that the intensity of some pixels such as the points 

on the coat of cameraman should be about zero. 

This, in turn, contains some pixels that hereafter we 

call them auxiliary points. By these auxiliary points, 

one can find a (fairly) good approximation for the 

intensity level of all pixels. Suppose that the number 

of auxiliary points and lost Fourier coefficients are 

the same. In this case, if the auxiliary points are 

exactly chosen, we can derive the original image 

precisely whenever the resulted system is accurately 

solved! In order to formulate this, let F be the Fourier 

transform of an M× N image f whose some of the 

coefficients are missing. Let F^H be the conjugate of 

F. One note that 

 ��$, %� =  �"�& −  $, ' −  %�, �$, %� ∈  )                                                                                                           �1� 

                                                                                 

where   ) =  {0,1, . . . , & −  1}  × {0,1, . . . , ' −  1},. It is readily seen that there do not exist the 

conjugate of  ��$, 0�   for  $ = 0,1, . . . , & −  1   and F(0,v) for % = 0,1, … , ' − 1.  Also, it is clear that                                                               

we must consider the case that   ��$, %�  and ��& − $, ' − %� are lost, simultaneously. In the sequel, 

we define: - = {�$, %� ∈  )| ��$, %� /� /� 011
��}, 2 = {�$, %� ∈  )|��$, %�/� 34�� 0�5 $% ≠  0}, 27 = {�$, %� ∈  )|��$, %�/� 34�� 0�5 $% = 0}, Υ = {��, �� ∈   )|��, �� /� 0�  0$�/3/09� :4/��}.
 

By definition of the inverse Fourier transform for each ��, �� ∈ Υ we have: 

 ;��, �� = �<= �∑ ��$, %�
?@ A BCDE FGHI J�K,L�∈ M + ∑ ��$, %�
?@ A BCDE FGHI J�K,L�∈ N∪ N7 ,                                                (2)  
Let ��$, %� = P�$, %� + �#�$, %� for �$, %� ∈  ) and also ⌊ � ⌋ and ⌈ � ⌉ denote the largest integer number 

less than or equal to � and the smallest integer number bigger than or equal to �, respectively. We also 

define the following sets: 

 2� = 2⋂ �V1,2, … , W&2 XY × {1,2, … , ⌊'2 ⌋}� 
2? =  2⋂�V1,2, … , W&2 XY × {⌈'2 ⌉ , … ,  ' − 1}� 
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2Z = 2⋂�V[&2 \ , … , & − 1Y × {1,2, … , ⌊'2 ⌋}� 
2] = 2⋂�V[&2 \ , … , & − 1Y × {⌈'2 ⌉, … , ' − 1}�. 

 

Now, requirement (1) and the preceding definitions imply that 

 � ��$, %�
?@ A BK�< FL�= J
�K,L�∈ N^

= � �"�$, %�
�?@ A BK�< FL�= J
�K,L�∈ N_

               
� ��$, %�
?@ A BK�< FL�= J

�K,L�∈ N`
= � �"�$, %�
�?@ A BK�< FL�= J

�K,L�∈ Na
.     �3� 

 
Therefore,  ∑ ��$, %�
?@ A BCDE FGHI J�K,L�∈ N  = ∑ ��$, %�
?@ A BCDE FGHI J�K,L�∈ N_ + �"�$, %�
�?@ A BCDE FGHI J� + ∑ ��$, %�
?@ A BCDE FGHI J�K,L�∈ Na +�"�$, %�
�?@ A BCDE FGHI J�     = � 2[P�$, %�14��2��$�/& + %�/'�� − #�$, %��/��2��$�/& + %�/'��]�K,L�∈ N_

       �4�
+ � 2[P�$, %�14��2��$�/& + %�/'�� − #�$, %��/��2��$�/& + %�/'��]�K,L�∈ Na

 
= � 214� �2� �$�/& + %�/'��P�$, %��K,L�∈ N_∪ Na

− � 2�/� �2� �$�/& + %�/'��#�$, %��K,L�∈ N_∪ Na
 

So, 

 

;��, �� = 1&' g � ��$, %�
?@ A BK�< FL�= J
�K,L�∈ M + � 2 cos k2� B$�& + %�' Jl P�$, %��K,L�∈ N_∪ Na

− � 2 sin k2� B$�& + %�' Jl #�$, %��K,L�∈ N_∪ Na
o             �5� 

Let  ;̅  be the inverse Fourier transform of the incomplete Fourier transform �. In other words, ;̅ is produced 

just by ��$, %� for �$, %� ∈ -. Assume that for ��, �� ∈ Υ, ;r��, �� are the intensity level of auxiliary points. In 

order to obtain a good reconstruction of ;��, �� for ��, �� ∈  )\Υ, we find �t such that for ��, �� ∈  Υ   

 ;r��, ��  = 1&' � � ��$, %�
?@ A BK�< FL�= J + �  �t�$, %�
?@ A BK�< FL�= J� �K,L�∈ N_∪ Na�K,L�∈ M  

Now, taking   ;u��, �� = ;r��, �� − 1&' � ��$, %�
?@ A BK�< FL�= J, ��, �� ∈ Υ       �6�   �K,L�∈ M  

 

and �t ≡  Pt + � #x into account, the preceding relations imply 

 

;u��, �� = 1&' g � �t�$, %�
?@ A BK�< FL�= J
�K,L�∈ N7 + � 2 cos k2� B$�& + %�' Jl Pt�$, %��K,L�∈ N_∪ Na

− � 2 sin k2� B$�& + %�' Jl #x�$, %��K,L�∈ N_∪ Na
o            �7� 
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The equality (7) can be expressed in a matrix form by zt = {| 

where 

{ = �<= } ~⏞�K,L�∈ N�� �⏞�K,L�∈ N_∪ Na � �⏞�K,L�∈  N_∪ Na� 
 

| = } �}�$, %� ∈ 2′�}�$, %� ∈  2� ∪ 2?�}�$, %� ∈  2� ∪ 2?
�   �9� 

 

  zt = B;u��, ��J��,��∈� and 

 

 
Therefore,  

 
We note that if 2′ = ∅, then the matrix { will be real.  

 

 3. Truncated SVD method 
      In this section, we present the truncated singular 

value decomposition to present an approximated 

solution of (8). Letting  |�| as the cardinal number of 

the vector �, the size of S is  It 

is well know that the linear system (8), will have a 

solution if    Since,  { is a 

dense matrix and moreover the size of an image and 

so the size of the Fourier transform coefficients is 

usually big, therefore, even if a few percentages of 

the Fourier transform coefficients are lost, the 

dimension of the matrix S would (fairly) be high. This 

implies that if         and S is a 

non-singular matrix, the direct solving of the system 

(8) will usually be impossible. Under condition  

 to find an approximated 

solution of (8) one can use the truncated singular 

value decomposition (TSVD) method. To this end, it 

is recalled that the matrix S can be factored as 

 

  

where � is an    unitary matrix,   Σ  is an    diagonal matrix, � is an 

 unitary matrix [17]. 

Let  be the singular values of { such that 

 
and 

  
The pseudo- inverse of  
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is defined to be the   diagonal matrix  

 
Now, the solution of (8) is given by ([17]) 

 
 

where the matrix {F  =  � �F�"  is the pseudo-inverse of {. Some of the tiny singular values may be 

generated by the accumulation error that should be removed, therefore, the solution (14) can be 

modified. Take 

  

 
 

For  / = 1, … , � in which   � is an acceptable tolerance. Now, defining the    diagonal 

matrix,     the solution (14) is modified by 

 | =  {7Fzt  (16) 

where {7F  =  � �7F�". This is called truncated SVD method. One note that a suitable suggestion of 

auxiliary points can lead to a good output. In this case, the value of ϵ should be enough small. 

 

4 A minimization algorithm 

In the previous section, we have presented a strategy to find the lost Fourier transform coefficients 

based on singular value decomposition. There are two types of errors in the given method. The first is 

related to the system and the second one is due to the selection of auxiliary points. Let us assume that 

. 

From (6) it is seen that z�  =  zt  + ��. To decrease the effect of the error created in the approximation 

of z�, the following convex minimization problem is proposed: 
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where λ is a positive constant. It is readily seen that the closed form solution of (17), then it satisfies 

the following equation: 

  . (18) 

where 
 is an identity matrix of size |�| × |�|. If {"{ is non-singular, then the saddle point system 

(18) has a unique solution, because �1 +  ��
 is a positive definite matrix, S is a full rank matrix and {"{ 

is a positive definite matrix (see [1] Section 3.1 ). However, since SHS is not always one to one, in general, 

(18) is an ill-posed system. Hence, the given system can be approximately solved by some appropriate 

pre-conditioners [1]. 

One way to overcome the ill-posedness is to add a regularization term to the energy, hence, a 

solvable method can be thought of as 

 
  

where � ∈  ��×�  is a given transform matrix corresponding to some regularization operators, µ is a 

constant positive regularization parameter and : =  0,1. The first term is a smoothing term and there 

are many choices for � such as gradient operator, wavelet transform and framelet transform. 

By using the variable splitting technique and quadratic penalty method, the problem (19) is rewritten 

into the following equivalent formulation [18]: 

 
 

The algorithm 

The approximated model (20) can be solved by alternating minimization method as follows: 

Solving d: By setting � ≔ 1/� and fixing z∗
 and x, the sub-problem for d reads: 

 

 
In the case of : =  0 [4,18], the sub-problem (21) is solved by hard shrinkage, i.e. 

 

 
When : =  1 [13,18], it is solved by soft shrinkage, that is, 

 
where the sign function is defined as 

 

 
Solving f∗: Now, fixing   and |, the sub-problem for z∗ reads 

  

 

where ¡� = ¢£  and ¡? = ¤£. The closed form solution for z∗ is as follows: 

 
Finally, the sub-problem for | reads: 
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The closed form solution for | is as follows: 

 | =  �{"{���[{"�z∗  −  ¥¦�]. (25) 

In the algorithm FISVD, we replaced the matrix S by the truncated SVD given in the previous section. 

So, taking { =  ���"  implies that �{"{���{"  =  � �7F�" 

Remark 1 The initial values z∗���  and x(0) are given by z�  =  �;̅��, ��� and (16), respectively. 

Remark 2 In order to get rid of the inversion of �"� + �¡�  + ¡?�
, it can be approximated by (1 + 

α1 + α2)I. 

 

Algorithm 1 FISVD 

 

5. Convergence analysis 

In this section, we prove that for � §  0 and appropriate selections of ¡1 and ¡2, the Algorithm 

FISVD is convergent. Before that, we need the following lemma: 

Lemma 1 The largest singular value of the coefficient matrix S is ≥ 1. 

Proof Let ¨��� ∶=  �0�{|�| ∶  � /� 0� 
/ª
�%03$
 4; �}. Since {"{ is a Hermitian matrix, on can 

write: 

 

It is enough to show that for some nonzero z, . For this sake, we consider two cases: 

Case 1: 27 ≠ ∅. 
By (9), there exist 9 ∶=  ��, ��  ∈  �  and : ∶=  �$, %�  ∈  2′ such that ~9, : ≠ 0 . Take « =  �0,0,¬¬¬

,0,1,0,¬¬¬ ,0�­  where 1 is located in the p-th column. This selection implies that . 

Case 2: 2′ =  ∅. 
Again, by (9), there exist 9 ∶=  ��, ��  ∈  � and � ∶=  �$, %�  ∈  2�  ∪  2? such that �®¯�®° ≠ 0 , where � =  |2� ∪ 2?| + �. Take « =  �0,0,¬¬¬ ,0, ±¯ , 0,¬¬¬ ,0, ±° , 0,¬¬¬ ,0�­  in which ±?̄  =  ±°?  =  1. 

Let {�9, : � denotes the r-th row of S. So, {�9, : �« =  2�±¯  14��0�  −  ±°  �/��0��, 
where 0 =  2��$�/& +  %�/'�. Since ³±¯  14��0� − ±°  �/��0�´?  =  1 −  ±¯±°  �/��20�, 
one can define: 

, 

This implies that |{�9, : �«|  µ  2 and so . □ 

Now, assume that  : =  1. For any vector 0 ∈  ¶=, we think of the operator {� as a soft shrinkage 

operator and assume that {? denotes the operator � �7F�". The Algorithm FISVD can be simplified as 

follows: 

 
where · =  �"� + �¡�  + ¡?�
 and ¸ =  ¡�¥¦  +  ¡?z. We define: 
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Now, one can rewrite (27) as follows: 

 
 

We assume that ���� ∩ ��{�  =  ∅ where ���� denotes the null space of A. This implies that the 

function  in (20) is coercive, that is, . Moreover,

 is convex and bounded from below. Therefore,  has at least one minimizer pair 

 which satisfies the following equations [3] 

 

 

 

 

 { 4 ℎ =  �{� 4 ℎ�, {? 4 ℎ?�is a fixed point of  ³ ¦, |¦´­
The first and third equations of (28) imply that 

[15]. Now, the convergence analysis of the given algorithm can be established based on the properties 

of non-expansiveness of soft shrinkage operator S1, S2 and h. The non-expansiveness of S1 has been 

proved in [21,23]. The operator S2 is non-expansiveness, because the selection of ϵ = 1 in (15) implies 

that 

. 

One note that Lemma 1 concludes that the selection of � =  1 makes nonzero the matrix �′. Let ¨�»� denotes the largest absolute eigenvalue of the matrix ». By choosing '1 =  ��, � �′ + �"� and '2 =  ��" , ¡� ���"�, we have: 

 
The last inequality is readily seen for an enough large value of α2, because 

Γ is a positive definite matrix and ¨�Γ��� ½ �¾_F¾a . Now, based on the non-expansiveness of the 

operators { and ℎ, the following theorem is proved by a similar argument given in Theorem 3.4 [23] that 

we have removed it: 

Theorem 1 For any fixed parameters τ > 0 and suitable selection of α1 > 0 and α2 > 0, the sequence {� ¿ , |¿ , z∗�¿��} generated by Algorithm FISVD converges to a solution � ¦, |¦, z�∗�� of problem (20). 
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Fig. 1 Test images. 

 

6.  Numerical results 

In this section, we apply the Algorithm 

FISVD and truncated SVD method on several 

standard test images in which some 

coefficients are missing in their Fourier 

transform domain. Also, these methods are 

compared with the Algorithm ICTDI and IFTDI 

given in [18] and [19], respectively. To this 

end, we consider three test images called 

”Cameraman”, ”Slope”, and ”Barbara” (see 

Figure 1). The Slope image contains smooth 

areas along with sharp edges. The Cameraman 

image has both large spikes and some fine 

structures. The image of Barbara contains a 

few different patterns, e.g. the scarf or the 

chair. 

 

 
Fig. 2 The auxiliary points are inside of the rectangles. 

 

 
Fig. 3 Performance of Algorithm FISVD for Cameraman in different iterations: (a) 1st iteration, (b) 

45-th iteration, (c) 93-th (last) iteration. 

 

 
Fig. 4 Performance of Algorithm FISVD for Slope in different iterations: (a) 1st iteration, (b) 40-th 

iteration, (c) 80-th (last) iteration. 

 

The Standard Peak Signal to Noise Ratio 

(PSNR) is employed to measure the quantify of 

inpainting performance [14,10]: 

, 

where f is the original image and f∗ is the 

reconstructed image (output of the 

algorithm). 

This relation shows that the larger PSNR, 

the better performance [5]. The stop criterion 

can be thought of as ∥f∗(k+1) −f∗(k)∥ < ε where ε 

is an acceptable tolerance value. Here, we 

computed the stopping criterion for 

Algorithms FISVD, ICTDI and IFTD based on the 

relative error (ReErr) between the successive 

iteration of the restored images satisfying the 

following inequality [18,25] 

. 

In all examples, we consider � ∶=  Á, i.e., a 

gradient operator. As we explained before, the 

auxiliary points are selected based on our 

conjecture of the intensity of the original 

image in some areas. The inside of rectangles 
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in Figure 2 are considered as auxiliary points of 

Cameraman, Barbara and Slope, respectively. 

 

 
Fig. 5 Performance of Algorithm FISVD for Barbara in different iterations: (a) 1st iteration, (b) 85-th 

iteration, (c) 172-th (last) iteration. 

Table 1 Comparison of the algorithms for Cameraman 

Method Iteration CPU(sec.) PSNR 

IFTD 80 12 36 

ICTDI 79 8 30 

FISVD 93 15 42 

TSVD - - 40 

 

Table 2 Comparison of the algorithms for Slope 

Method Iteration CPU(sec.) PSNR 

ICTDI 90 8 32 

IFTD 87 14 35 

FISVD 80 12 41 

TSVD - - 41 

 

Table 3 Comparison of the algorithms for Barbara 

Method Iteration CPU(sec.) PSNR 

ICTDI 115 34.91 24.01 

IFTD 137 44.50 24.26 

FISVD 172 53 39 

TSVD - - 38 

 

For Cameraman, z�  ≡  0.04  is taken. For 

Slope image, z�  ≡  0.1  for the bottom right 

hand rectangle and ̂ f ≡ 0.9 for the bottom left 

hand rectangle are taken. The main problem is 

related to Barbara image that is hard to find a 

good approximation of auxiliary points. 

Hence, the intensity of auxiliary points in 

Barbara is considered as z�  +  0.05. 

Tables 1, 2 and 3 show comparisons 

between the Algorithms FISVD, TSVD, ICTDI 

[18] and IFTD [19] due to the reconstruction of 

the Cameraman, Slope and Barbara, 

respectively. For implementing the Algorithm 

FISVD, we considered τ = 0.001 for all three 

images. For Cameraman and Slope, α1 = 10 and 

α2 = 20 and for Barbara, α1 = α2 = 100 are taken. 

Moreover, for truncated SVD method, ϵ = 1 is 

taken. The comparisons show that the 

algorithm FISV and TSVD method reconstruct 

the images better than ICTDI and IFTD

. 
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Fig. 6 The PSNR values of FISVD and TSVD algorithms for Cameraman with different auxiliary points. 

 
Fig. 7 The PSNR values of FISVD and TSVD algorithms for Barbara with different auxiliary points. 
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Fig. 8 The PSNR values of FISVD (bottom) and TSVD (top) algorithms for Slope with different 

auxiliary points. 

 

All experiments were performed in 

MATLAB R2018a running on a Sony desktop 

with Intel Core i5 CPU at 2.40 GHz and 4 GB of 

memory. 

 

7. Conclusion 

In this paper, we presented a semi-supervised 

feature selection method for inpainting an image in 

the Fourier transform domain. We have used a 

truncated singular value decomposition to present 

the algorithm. The experimental results show the 

efficiency of the proposed algorithm.  
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