
  REVISTA ARGENTINA 
                                                             2021, Vol. XXX, N°2, 432-420       DE CLÍNICA PSICOLÓGICA 

GSEA–SDBE: A Gene Selection Method for Breast 
Cancer Classification Based on GSEA and Random 

Forest Based Dimension Reduction 
 

Tailong Lei 
 

Abstract 
Selecting the most relevant genes for sample classification is a common process in gene 
expression studies. Moreover, determining the smallest set of relevant genes that can 
achieve the required classification performance is particularly important in diagnosing 
cancer and improving treatment. In this study, I propose a novel method to eliminate 
irrelevant and redundant genes, and thus determine the smallest set of relevant genes for 
breast cancer diagnosis. The method is based on random forest models, gene set 
enrichment analysis (GSEA), and our developed Sort Difference Backward Elimination 
(SDBE) algorithm; hence, the method is named GSEA–SDBE. Using this method, genes are 
filtered according to their importance following random forest training and GSEA is used 
to select genes by core enrichment of Kyoto Encyclopedia of Genes and Genomes 
pathways that are strongly related to breast cancer. Subsequently, the SDBE algorithm is 
applied to eliminate redundant genes and identify the most relevant genes for breast 
cancer diagnosis. In the SDBE algorithm, the differences in the Matthews correlation 
coefficients (MCCs) of performing random forest models are computed before and after 
the deletion of each gene to indicate the degree of redundancy of the corresponding 
deleted gene on the remaining genes during backward elimination. Next, the obtained 
MCC difference list is divided into two parts from a set position and each part is 
respectively sorted. By continuously iterating and changing the set position, the most 
relevant genes are stably assembled on the left side of the gene list, facilitating their 
identification, and the redundant genes are gathered on the right side of the gene list for 
easy elimination. A cross-comparison of the redundancy difference comparison 
elimination (RDCD) algorithm was performed by respectively computing differences 
between MCCs and ROC_AUC_score and then respectively using 10-fold classification 
models, e.g., RF, SVM, KNN, XGBoost, and ExtraTrees. Results showed that analyzing MCC 
differences and using random forest models was the optimal solution for the RDCD 
algorithm. Accordingly, three consistently relevant genes (i.e., VEGFD, TSLP, and PKMYT1) 
were selected for the diagnosis of breast cancer. The performance metrics (MCC and 
ROC_AUC_score, respectively) of the random forest models based on 10-fold verification 
reached 95.28% and 98.75%. In addition, survival analysis showed that VEGFD and TSLP 
could be used to predict the prognosis of patients with breast cancer. 
Keywords: gene set enrichment analysis, random forest, backward elimination, 
redundant genes 
 

1 Introduction 
Selecting relevant genes to distinguish patients 

with or without cancer is a common task in gene 
expression research (Hartmaier et al., 2017; 
Giovannantonio et al., 2020). For genetic diagnosis 
in clinical practice, it is important to efficiently 
identify relevant genes and eliminate irrelevant and  
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redundant genes to obtain the smallest possible 
gene set that can achieve good predictive 
performance (Dı´az-Uriarte et al., 2006). 

To this end, genetic selection methods are of 
great importance. These methods can be roughly 
divided into three categories: filters, wrappers, and 
mixers (Pok et al., 2010). In a previous study, we 
focused on a hybrid approach that combines the 
advantages of filter and wrapper methods (Xie et 
al., 2011). For cancer classification, previous hybrid  
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approaches have utilized symmetrical uncertainty 
to analyze the relevance of genes based on support 
vector machines (Piao et al., 2012), employed 
minimum redundancy and maximum relevance 
feature selection to select a subset of relevant 
genes (Elyasigomari et al., 2017), and applied 
Cuckoo search to select genes from microarray 
technology (Sampathkumar et al., 2020). 

The hybrid approach essentially includes two 
processes, selecting relevant genes and eliminating 
redundant genes. To select relevant genes, previous 
research has utilized semantic similarity 
measurements of gene ontology terms based on 
definitions for similarity analysis of gene function 
(Pesaranghader et al., 2016), applied the concept of 
global and local gene relevance to calculate the 
equivalent principal component analysis load of 
nonlinear low-dimensional embedding (Philipp et 
al., 2020), and obtained relevant features from the 
TCGA transcriptome dataset by cooperative 
embedding (Shuzhen et al., 2020). Because relevant 
genes often contain redundant genes, the process 
of gene elimination is important for obtaining the 
minimal number of relevant genes that can function 
effectively in a classification model. Many methods 
can be applied including feature similarity 
estimated by explicitly building a linear classifier on 
each gene (Zeng et al., 2008), homology searching 
against a gene or protein database (Ono et al., 
2015), or the Cox-filter model (Suyan, 2018). 

In the present study, I propose a novel hybrid 
method that can determine the smallest set of 
relevant genes required to achieve accurate 
classification of breast cancer diagnosis. Breast 
cancer transcriptome data can be downloaded from 
the TCGA database; this unbalanced data was used 
in the current analyses. Random forest and gene set 
enrichment analysis (GSEA) were applied to select 
relevant breast cancer genes and the proposed 
redundancy difference comparison elimination 
(RDCD) algorithm was then used to eliminate 
redundant genes from these relevant genes; hence, 
the proposed method was named GSEA–SDBE 
(where SDBE is Sort Difference Backward 
Elimination). First, a random forest model was 
constructed and trained with all the differential 
gene expression data and then the genes for which 
importance was almost zero were deleted. 
Subsequently, GSEA was applied to analyze the 
remaining differentially expressed genes (DEGs) 
according to Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment and those 
genes that were strongly related to breast cancer 
were selected from the enriched KEGG pathways. 
Then, the RDCD algorithm was applied to identify  

 
the important relevant genes from the selected 
genes. The RDCD algorithm includes a process by 
which the difference in the Matthews correlation 
coefficients (MCCs) of random forest models is 
calculated before and after the deletion of a given 
gene, which indicates the degree of redundancy of 
the corresponding deleted gene on the remaining 
genes according to backward elimination. Using the 
RDCD algorithm, the most relevant genes are stably 
collected on the left side of the gene list while the 
redundant genes are gathered on the right side of 
the gene list. Through the GSEA–SDBE method, an 
optimal model was created that could determine 
the smallest set of relevant genes for breast cancer 
diagnosis. Results showed that this method could 
achieve excellent classification performance for 
breast cancer. Furthermore, some of the selected 
relevant genes could be used to predict prognosis in 
patients with breast cancer. 
 
2 Materials and methods 
2.1 Data preparation 
2.1.1 Breast cancer transcriptome data 

Transcriptome data from breast cancer samples 
and the clinical data of corresponding patients were 
downloaded from TCGA database 
(https://cancergenome.nih.gov/). A total of 1222 
transcriptome samples, wherein each sample 
contained expression of 18584 genes, were 
obtained. This unbalanced dataset, which includes 
113 normal and 1109 tumor tissues, was named 
BTC_1222 (113: 1109). In addition, the clinical data 
of 1109 patients with breast cancer were obtained. 

 
2.1.2 Differential expression analysis and 
normalization 

By performing the Mann–Whitney–Wilcoxon 
test in R software (wilcox.tes) with logFC > 1 and 
FDR < 0.05 as the thresholds, 4579 DEGs were 
screened between the normal samples and tumor 
samples from the BTC_1222 dataset. These samples 
were randomly shuffled and the expression values 
of each DEG in all samples were respectively 
standardized via min–max normalization. 

 
2.2 Selecting genes by importance based on a 
random forest model 

The random forest method can provide an 
assessment of variable importance to variable 
selection (Deng et al., 2013; Alikovi et al., 2017). A 
random forest model was constructed and trained 
using Sklearn 0.22.2. post1 in python 3.6 with the 
dataset BTCD_1222. The model was used to 
calculate the importance of variables (genes) and 
the genes were sorted by their importance in  
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descending order. From these genes, a certain 
number of top genes were selected based on 
experience to reduce the burden of subsequent 
procedures. 

 
2.3 Gene selection by GSEA 

GSEA (Aravind et al., 2007) can be used to 
determine whether a group of genes shows 
statistically significant and concordant differences 
between two biological states according to 
enrichment analysis; here, it was performed by the 
JAVA program. The KEGG database includes a 
collection of manually drawn graphical maps known 
as KEGG pathway maps (Ogata et al., 1999). KEGG 
in the Molecular Signatures Database (MSigDB) 
(Liberzon et al., 2011) was chosen as the back-end 
database of GSEA. GSEA was run and genes were 
selected through the core enrichment (Reimand et 
al., 2011) of KEGG pathways strongly related to 
breast cancer. Therefore, it was possible to screen 
for DEGs that were closely associated with breast 
cancer. Genes that were weakly associated with or 
were unrelated to breast cancer were filtered out, 
even if they had high importance in a random forest 
model. 

 
2.4 Metrics and benchmark methods 

The performances of all classification models 
applied in this study were evaluated by 10-fold 
cross-validation. The models were trained and 
tested with 10-fold cross-validation. According to 
the prediction results and tested data, they were 
respectively merged in a given order. By comparing 
the prediction results with the tested data, true 
positives (TP), false positives (FP), false negatives 
(FN), and true negatives (TN) were obtained. 
Normal samples were negatives and tumor samples 
were positives. Tests were conducted on a real 
dataset with unbalanced data. Therefore, the 
effectiveness of the binary classification model was 
measured by several performance metrics 
(Robinson et al., 2010) including accuracy (Acc), 
precision (Pr), sensitivity (Se), recall (Re), F1_score 
(F1), computed area under the receiver operating 
characteristic curve from prediction scores 
(ROC_AUC_score), and MCCs. The formulas and 
functions are as follows: 
ROC_AUC_score = sklearn.metrics.roc_auc_score          
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2.5 SDBE algorithm 

The training, testing, and calculation of various 
performance metrics for all classification models 
were based on 10-fold cross-validation. The focus 
was on finding a high-performance classification 
model with the fewest variables (genes); 
subsequently, a novel algorithm, namely SDBE, was 
proposed. The underlying principle of the SDBE 
algorithm is that the performance metrics of the 
classification model will not change significantly 
after a redundant gene is deleted. Therefore, the 
differences in the chosen performance metrics 
were computed before and after deletion of each 
gene to indicate the degree of redundancy of the 
corresponding deleted gene on the remaining 
genes in backward elimination based on the 
random forest method. These deleted genes were 
collected into a list in reverse order during 
backward elimination (John et al., 1994). 

From a set position, genes were sorted by their 
corresponding performance metric differences in 
descending order into the two parts and the two 
parts were then merged. Through continuously 
iterating and changing the set position, the 
important relevant genes were stably assembled on 
the left side of the gene list to facilitate their easy 
identification, whereas redundant genes were 
gathered on the right side of the gene list for easy 
elimination. The procedure underlying the SDBE 
algorithm is provided in Figure 1. The SDBE 
algorithm consists of seven stages as follows. 
 
Stage 1 

In each loop of backward elimination, 10-fold 
random forest models were trained and tested to 
calculate various performance metrics and the 
average importance of each variable, i.e., each 
gene. Next, these genes were sorted in descending 
order of average importance. After each loop of 
backward elimination, the deleted gene with the 
least importance and various metrics of the model 
were added to various dedicated lists. Thus, by  
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respectively transposing all the lists, a list of genes 
G (gk, 0 ≤ k ≤ n) in descending order of importance 
and various metric lists were obtained. These lists 
were provided to the stages that followed. 
Importantly, gene g0 at the first position in the list 
of the genes was determined at this stage because 
the position of this gene would not change in 
subsequent steps. 

 
Stage 2 

One of model performance metrics, such as 
MCC or ROC_AUC_score, was chosen as the object 
of difference analysis for subsequent steps and the 
index variable ST was initialized to 0. 

 
Stage 3 

The following formula was used to compute the 
difference in the performance metric before and 
after gene deletion during backward elimination 
based on random forest modeling: 

1,0i i idm m m i n   
, 

where mi and mi−1 respectively denote the 
metric before and after deleting gene gi (0 < i ≤ n) 
from sublist Gs (gu, 0 ≤ u ≤ i, 0 < i ≤ n) of gene list G 
(gk, 0 ≤ k ≤ n) in backward elimination. Only one 
gene was deleted from the end of list Gs at each 
loop in backward elimination. The performance 
metric difference dmi (0 < i ≤ n) could indicate the 
degree of redundancy of the corresponding deleted 
gene gi (0 < i ≤ n) on the remaining genes of sublist 
Gs. 

 
Stage 4 

The value of the variable ST was used as the 
index position to search forward in the metric 
difference list DM (dmi, 0 < i ≤ n) until an element 
<0 was encountered; the index of this element was 
used to update the variable ST. 

 
Stage 5 

The metric difference list DM was split into two 
parts, part1 and part2 (including the element at 
index ST) by index ST, and then the elements in 
part1 and part2 were respectively sorted in a 
descending order. 

 
Stage 6 

The elements of part1 and part2 were replaced 
with genes by the corresponding relationship 
between dmi (0 < i ≤ n) and gi (0 < i ≤ n), and then 
the two parts were merged into a new gene list NG. 
Subsequently, g0 in the list G was added to the end 
of the new list NG. Then, the list NG was transposed. 

 

 
Stage 7 

The genes of the list NG were analyzed by 
backward elimination. At each step of backward 
elimination, the 10-fold classification mode, e.g., RF, 
SVM [], KNN, XGBoost, and ExtraTrees, was trained 
and tested to calculate various performance 
metrics. After each step of backward elimination, 
the performance metrics were respectively added 
to the corresponding metric lists. Then, the metrics 
lists, which were respectively transposed, and the 
list NG were sent to stage 3 to start a new iteration. 
 
2.6 The entire pipeline of the GSEA–SDBE method 

The gene selection procedure followed in the 
GSEA–SDBE method is provided in Figure 2. 

 
3 Results 
3.1 Differential expression analysis and 
normalization 

From 4579 DEGs identified in from the BT_1222 
dataset, 2702 were upregulated and 1877 were 
downregulated, respectively. These genes are 
represented in a volcano plot in Figure 3. 

 
3.2 Random forest models 

Having trained a random forest model with data 
on 4479 DEGs, the out-of-bag error was 0.01%. 
Genes were sorted by their importance in 
descending order, as shown in Figure 4. Selecting 
the top 2000 genes from the 4579 DEGs was 
optimal in the experiments; thus, the remaining 
2579 genes, for which the importance was close to 
zero, were deleted. 

 
3.3 GSEA 

GSEA 3.0 was applied to analyze 2000 DEGs with 
KEGG pathways enrichment; the gene sets database 
was set to c2.cp.kegg.v7.1.symbols.gmt of the 
MSigDB. In enrichment results, 30 gene sets were 
obtained. These included five and 15 upregulated 
and downregulated gene sets in the phenotype 
“Tumor” (Supplementary Table S1), respectively. 
Four gene sets (Table 1) were selected that were 
strongly associated with breast cancer (Figure 5). 
Altogether, 60 genes were identified, including 20 
upregulated genes and 40 downregulated genes, 
after deleting 12 repeated downregulated genes 
from 72 genes in the core enrichment of the four 
gene sets. 

 
3.4 SDBE algorithm 

In the SDBE algorithm, the training, testing, and 
calculation of various performance metrics for all 
classification models were based on 10-fold cross-
validation. The expression data of 60 genes from  
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the GSEA enrichment analysis results were used in 
the SDBE algorithm. From stage 1 of the algorithm, 
60 genes were listed in descending order of 
importance, as shown in Supplementary Table S2, 
and various metric lists (including acc, Pr, Se, Re, 
F1_score, ROC_AUC_score, and MCC) were 
illustrated using matplotlib in python 3.6 for 
comparison (see the red polylines in Figure 7). It 
was difficult to select the smallest gene set that 
could still achieve good predictive performance by 
sorting genes by their importance, although ranking 
genes by importance was vital to the process. The 
most important part of this step was determining 
the top gene in the list as this gene does not change 
in subsequent steps. From this stage, the gene and 
metric lists were passed to the stages that followed. 

In stage 2 of the SDBE algorithm, the 
performance metrics ROC_AUC_score and MCC 
were respectively chosen as the objects of 
difference analysis for subsequent iterations; each 
iteration included stage 3–7 and the number of 
iterations was set at 19. To compare the influence 
of different classification models in the SDBE 
algorithm, the following were respectively chosen 
for use as the classification model: RF, SVM, KNN, 
XGBoost, and ExtraTrees. Therefore, the SDBE 
algorithm was cross-tested. Regardless of the object 
chosen for difference analysis (ROC_AUC_score or 
MCC) and the classification model (RF, SVM, KNN, 
XGBoost, or ExtraTrees) used, as the iteration 
progressed the most relevant genes were 
assembled in a stepwise manner on the left side of 
the gene list, whereas the redundant genes were 
gathered in a stepwise manner on the right side of 
the gene list (Figure 6). On the left side of the gene 
list, the identity and number of stable relevant 
genes differed depending on the analysis target and 
classification model, with three stable relevant 
genes being the maximum (Supplementary Table 2). 

To cross-compare the SDBE algorithm, we used 
the 19th iterations of the algorithm and compared 
the same performance metrics of multiple 
classification models (RF, SVM, KNN, XGBoost, and 
ExtraTrees; Figure 6). As shown by the shapes of the 
polylines in Figure 6, using MCC as the object of 
difference analysis produced better results than 
using ROC_AUC_score. With MCC, the performance 
metrics of the RF model were better than the 
performance metrics of the other classification 
models; the blue polyline of the RF model was 
always above the other polylines. Therefore, we 
assessed the polyline of RF and found that the top 
three genes did not reach the peak or trough of the 
polyline but were close to each (Figure 6a). More 
importantly, the top three genes were stable and  

 
repeatable. Therefore, we extracted performance 
metrics of classification models trained and tested 
using the top three genes from Figure 6 for 
comparison (Tables 2 and 3). Except for FDR 
(1.77%), the relative performance metrics of the RF 
model in Table 2, showing MMC as the object, were 
superior to those in Table 3 (ROC_AUC_score as the 
object); moreover, the top three genes from the 
classification models RF, KNN, XGBoost, and 
ExtraTrees were identical when MMC was the 
object (Table 2) but typically differed among the 
models when ROC_AUC_score was the object 
(Table 3). Because the data used to train and test 
the classification models were unbalanced (113 vs. 
1109 samples), the performance metrics MCC and 
ROC_AUC_score of the RF model were focused 
upon. 

In summary, using MCC as the object of 
difference analysis and RF as the classification mode 
in the SDBE algorithm was optimal. In addition, 
three stable relevant genes, namely VEGFD, TSLP, 
and PKMYT1, were chosen for the diagnosis of 
breast cancer. Moreover, based on 10-fold 
verification, the performance metrics MCC and 
ROC_AUC_score for RF models were 95.28% and 
98.75%, respectively. 
 
3.5 Survival analysis of patients 

First, patients were divided into two groups, 
high and low risk, based on the median expression 
of a certain gene. If the gene was downregulated, 
the patients whose expression of the gene was 
lower than the median expression were classified as 
high risk, whereas the remaining patients were low 
risk. If the gene was upregulated, the method of 
grouping was reversed. 

Kaplan–Meier survival analysis and log-rank 
tests were used to determine the prognostic 
significance of expression of the three genes, 
VEGFD, TSLP, and PKMYT1, in patients with breast 
cancer. VEGFD and TSLP were downregulated 
genes, whereas PKMYT1 was upregulated. A log-
rank test revealed that patients with low VEGFD and 
TSLP expression had significantly shorter overall 
survival (OS) times than those patients with high 
expression of these genes (P = 0.0466 and P = 
0.0003, respectively; Figure 8); the median OS times 
in months (with 95% confidence intervals) were 129 
(114–142) and 116 (102–132), respectively; Figure 
8 and Table 4). In contrast, the result of the log-rank 
test for PKMYT1 was not significant (P = 0.2095) and 
the polylines of the high-risk and low-risk groups for 
this gene crossed at 120 months (Figure 8c). 
Therefore, VEGFD and TSLP could be used to predict 
prognosis in patients with breast cancer, whereas  
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PKMYT1 is not suitable for this purpose. 
 
4 Discussion 

In this study, DEGs were extracted from a breast 
cancer data set. Genes that are not significantly 
differentially expressed but have important 
biological significance for breast cancer could easily 
be missed in this process; however, even if these 
lost genes are retained, they may be deleted in 
subsequent processing. Indeed, such genes would 
be ignored by the classification model used in the 
GSEA–SDBE method described here. Nevertheless, 
this did not affect the ability of the method to 
identify some key genes for the diagnosis of breast 
cancer. 

Dimensionality reduction runs through the 
entire GSEA–SDBE method; each step in the 
method prepares for dimensionality reduction in 
the next step. According to experience, selecting 
too few genes leads to some important pathways 
not being enriched, whereas selecting too many 
genes overfills the core enrichment of pathways 
with genes that make subsequent gene elimination 
difficult and GSEA time consuming. Therefore, the 
list of DEGs was sorted in descending order by 
variable importance according to a random forest 
model; the top 2000 genes were selected for 
analysis and some genes with importance close to 
zero were removed based on experience. 

Although the selection of KEGG pathways in 
GSEA based on experience is subjective, it does not 
prevent obvious DEGs with no important biological 
significance for breast cancer being filtered out. In 
addition, these genes may also enhance the 
performance of classification models and the 
selection of important genes would be 
compromised. However, redundant genes were 
filtered out during processing with the GSEA–SDBE 
method. 

To eliminate redundant genes, the SDBE 
algorithm was applied. This algorithm computed 
the difference in performance metrics of the 
classification model before and after gene deletion 
during backward elimination, which indicated the 
degree of redundancy of the deleted gene on the 
remaining genes. When a gene was deleted from 
the gene list in this manner, the performance 
metrics of the classification model did not change 
significantly. Therefore, the deleted gene was 
similar to some remaining genes, and thus 
considered redundant. 

Given the underlying principle of the SDBE 
algorithm, the top gene in the gene list would not 
participate in the sorting process and would not be 
recognized as redundant; additionally, the first gene  

 
in a similar gene group in the gene list would not be 
recognized as redundant or deleted. Therefore, 
stage 1 of the SDBE algorithm is particularly 
important because genes are sorted by their 
importance in RF during backward elimination at 
this stage. 

At stage 5 of the SDBE algorithm, to speed up the 
sorting process and reduce the number of cycles, 
the metric difference list was divided into two parts 
from a set position and these two parts were 
respectively sorted in descending order. The change 
of the set position occurred at stage 4. From the set 
position in the metric difference list, a forward 
search was conducted until an element with a value 
less than the threshold, which was set at zero, was 
encountered; the index of this element was used to 
update the set position. If the threshold was set to 
a certain value greater than zero, this may be more 
conducive to sorting. However, from the 19 
iterations shown Figures 2 and 3, the polylines of 
the performance metrics for the classification 
models, particularly RF with MCC as the object of 
difference analysis, met the requirements. 
Including many more iterations would have been 
more time consuming. However, setting 
ROC_AUC_score as the object of difference analysis 
was less effective compared with using MCC, which 
might be related to the complexity of the 
ROC_AUC_score formula. 
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Tables and Figures  
Table 1. Gene sets (pathways) that were strongly related to breast cancer. 

GENE SET NAME ES NES 
NOM P 
value 

FDR Q 
value 

Gene number (core 
enrichment) 

KEGG_CELL_CYCLE 0.60 1.37 0.201 0.319 20 
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION −0.29 −0.96 0.496 0.726 17 
KEGG_JAK_STAT_SIGNALING_PATHWAY −0.48 −1.34 0.143 1.000 11 
KEGG_PATHWAYS_IN_CANCER −0.23 −0.84 0.720 0.790 24 

 
Table 2. MCC as the object of difference analysis: 10-fold cross-validation classification metrics (%) of the top 
three genes. 

Modes ROC_AUC_score MCC Recall FPR F1_score Accuracy Top three genes 
RF 0.9875 0.9528 0.9928 0.0177 0.9955 0.9918 VEGFD, TSLP, PKMYT1 

SVM 0.9684 0.8832 0.9810 0.0442 0.9882 0.9787 VEGFD, PKMYT1, BUB1B* 
XGBoost 0.9861 0.9396 0.9900 0.0177 0.9941 0.9893 VEGFD, TSLP, PKMYT1 

KNN 0.9653 0.8897 0.9837 0.0531 0.9891 0.9803 VEGFD, TSLP, PKMYT1 
ExtraTrees 0.9818 0.9345 0.9900 0.0265 0.9937 0.9885 VEGFD, TSLP, PKMYT1 
Genes marked with * are unstable genes in the SDBE algorithm. 
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Table 3. ROC_AUC_score as the object of difference analysis: 10-fold cross-validation classification metrics (%) 
of the top three genes. 

Modes ROC_AUC_score MCC Recall FPR F1_score Accuracy Top three genes 

RF 0.9799 0.8840 0.9774 0.0177 0.9877 0.9779 VEGFD, SPRY2, BUB1B* 
SVM 0.9828 0.8501 0.9657 0.0 0.9825 0.9689 VEGFD, CCNB1*, TSLP* 
XGBoost 0.9812 0.8952 0.9801 0.0177 0.9890 0.9803 VEGFD, CCL14, TSLP 
KNN 0.9771 0.8627 0.9720 0.0177 0.9849 0.9710 VEGFD, TSLP, CCL14 
ExtraTrees 0.9809 0.9260 0.9883 0.0265 0.9927 0.9869 VEGFD, TSLP, CDC25C 

Genes marked with * are unstable genes in the SDBE algorithm. 
 
Table 4. Results of survival analysis for high-risk and low-risk groups according to three genes. 

P value: comparison between high risk and low risk; Inf: data points not obtained; SP (5 y): 5-year survival 
probability; M-OS (95% CI): median overall survival time in months with 95% confidence intervals. 
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Figure 1. Procedure of the Sort Difference Backward Elimination (SDBE) algorithm. 
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Gene 
Name 

Expression in 
tumor 

P value High risk  Low risk 
SP (5 
y) 

M-OS [95% CI] n SP (5 
y) 

M-OS [95% CI]       n 

VEGFD Downregulated 0.0466 0.8088 129 [114–142]                 846  0.8552 149 [122–inf] 262 
TSLP Downregulated 0.0003 0.7896 116 [102–132]                   786  0.8837 248 [122–inf] 322 
PKMYT1 Upregulated 0.2095 0.7743 149 [102–inf] 419  0.8494 131 [115–215] 689 
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Select  genes by  importance of RF

Select  genes by GSEA

Select  genes by SDBE algorithm

Original gene differential 
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Figure 2. Gene selection procedure in the GSEA–SDBE method. 
 

Figure 3. Volcano plot of differentially expressed genes. The red and blue dots represent upregulated and 
downregulated genes, respectively. 
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Figure 4. Genes sorted by importance in descending order. 
 

Figure 5. Enrichment plots for the four gene sets (pathways) that were strongly related to breast cancer. 
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Figure 6. Polylines of classification metrics, MCC, and ROC_AUC_score in 19 iterations. 
 

Figure 7. Polylines of classification metrics at the 19th iteration of the Sort Difference Backward Elimination 
(SDBE) algorithm. 
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(a) MCC as the object of difference analysis. 

 

(b) ROC_AUC_score as the object of difference analysis. 

(a) MCC as the object of difference analysis (b) ROC_AUC_score as the object of difference analysis. 
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Figure 8. Kaplan–Meier survival graphs for expression of VEGFD (a), TSLP (b), and PKMYT1 (c). Red and blue 
curves denote high-risk and low-risk groups, respectively. 
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